
Microcontroller
ENGINEERING REVIEW

Volume 7

Unlocking the Secrets of the MAXQ
The MAXQ® processor family are powerful
8-, 16-, and 32-bit, single-cycle microcon-
trollers that perform multiple operations in one
clock cycle. This article explores the internal
workings of the MAXQ20 core, and showcases
its immense power.

Programmer’s Model

The MAXQ20 core is a 16-bit CPU, meaning
that all accumulators and most working
registers (stack, data pointers, counters) are
16 bits in length. The MAXQ20 can address
64kWords of code space (that is, 64kB
instructions) and 64kWords (128kB) of data
space (Figure 1).

Note that, for a processor based on the
MAXQ20 core, much of this memory space
will be vacant. Additionally, because the utility
ROM and data RAM reside in the upper 32kb
of code space, access to user code in this region
requires special features in the core that are
beyond the scope of this article.

Accumulators

Sixteen registers known as “accumulators” form a general-purpose register array. The register to
which the Accumulator Pointer register (AP) points is designated the “active accumulator,” which is
the target of arithmetic and logical operations. Thus, by changing the value in the AP register, any of
the 16 accumulators can be designated the target of an arithmetic logic unit (ALU) operation. The
Accumulator Pointer Control register (APC) causes the AP to increment or decrement automatically
whenever the active accumulator is accessed, thus making multiprecision arithmetic simple. In
Figure 2, A[0] is the active accumulator, but any accumulator access can make A[1] or A[15] the
active accumulator, depending on the value of the APC register.

GR Register

The General Register (GR) aids in the extraction of individual bytes from a 16-bit word. A
programmer can use GR to assemble bytes into a word: load the low byte into GRL (General
Register–Low byte), the high byte into GRH (General Register–High byte), and read the assembled
word in GR. Alternately, a programmer can use the GR register to decompose a word into its
constituent bytes. A word loaded into GR can be read in a byte-swapped format in GRS (General
Register–Swapped). Finally, a byte loaded into the GRL register can be sign-extended to a word by
reading GRXL (General Register eXtend Low byte). See Figure 3.

Table of Contents

Unlocking the Secrets of
the MAXQ...................1

SD Media Format
Expands the
MAXQ2000’s Space for
Nonvolatile Data
Storage.......................8

Using Rowley
CrossWorks and the
MAXQ3100* Evaluation
Kit to Create a
Temperature Logging
Application13

ACCUMULATOR
ARRAY

AP

APC

DP[0]

DP[1]

BP

GR

GRH GRL

OFFS

LC[0]

LC[1]

SP

DATA
MEMORY
ADDRESS

IP

CODE
MEMORY
ADDRESS

STACK

FP

LOOP COUNTERS DATA POINTERS

Figure 1. The
programmer’s model for
the MAXQ20 core consists
of 16 general-purpose
accumulators, two loop
counters, and a set of data
pointers.

2

Loop Counters

There are two loop counters: Loop Counter 0 (LC[0]) and Loop
Counter 1 (LC[1]). These registers can be used as general-
purpose registers, but are intended as loop counters for decrement
and jump if the counters are nonzero (DJNZ) instructions.

Stack

The MAXQ20 core has a dedicated, 16-level internal stack. A
stack pointer indicates the next stack location to be used or
indicates PUSH or CALL operations.

Data Memory Pointers

The MAXQ microcontroller has three pointers to access data
memory. Two, DP[0] and DP[1], are simple 16-bit pointers. The
third pointer is formed by adding a base address pointer (BP) to
an 8-bit unsigned offset (OFFS).

Note that the data memory, as addressed by one of the three data pointers, is distinctive from
the code memory, addressed by the instruction pointer. While all MAXQ processors include
a memory management unit (MMU) that allows any memory segment to be treated as code
or data, the code and data buses are separate. This separation of buses for code and data
fetch operations is a fundamental element of the MAXQ20 technology, and allows
simultaneous code and data access in a single clock cycle.

Transfer-Triggered Architecture

By inspecting the programmer’s model, one could conclude that there is a conventional
instruction fetch-decode unit that loads an instruction, decodes it, and then activates certain
elements of the CPU. That, however, would be a misconception. What sets the MAXQ
architecture apart from other, more conventional CPUs is the transfer-triggered nature of
the MAXQ core.

Transfer-triggering is a technique that allows a simple MOVE instruction to perform every
function available in the CPU. While the MAXQ assembler supports more than 30
instruction op codes, one could encode every instruction in the MAXQ instruction set as:

move Ma[b], Mc[d]

or
move Ma[b], #immediate_value

where the designation Ma[b] describes register module a and
register subdecode b. Simply stated: every instruction—ADD,
bit manipulation, reference to external memory—is coded as a
move between two registers or as a move of an immediate
value into a register.

When a MAXQ instruction is executed, the destination register is loaded with the contents of the
source register or with an immediate value. In addition, this transfer of data can trigger other events
like incrementing or decrementing a pointer, setting some status bit, or some other function. Hence,
the architecture is transfer-triggered. To support this architecture, a large register complement is
needed. In the MAXQ20 core, there is a total of 512 register addresses divided into two broad
sections: peripheral register space and system register space (Figure 4).

The first six register modules (modules 0 to 5) are dedicated to peripheral registers; the last nine
modules (modules 7 to F) are assigned as system registers. (Module 6 is reserved.) While the
peripheral register modules change from one type of MAXQ processor to another, the system
registers remain the same across all MAXQ processors (Figure 5).

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

A[8]

A[9]

A[10]

A[11]

A[12]

A[13]

A[14]

A[15]

AP == 0

A[0]

APC

00 – NO CHANGE
01 – MOD 2 INCREMENT
02 – MOD 4 INCREMENT
03 – MOD 8 INCREMENT
04 – MOD 16 INCREMENT
41 – MOD 2 DECREMENT
42 – MOD 4 DECREMENT
43 – MOD 8 DECREMENT
44 – MOD 16 DECREMENT

ACC ACCESS

A B C D

0 0 A B 0 0 C D

C D A B F F C D

GR:

GRH: GRL:

GRS: GRXL:RO
RO

THE GR REGISTER AND ITS VARIANTS

PERIPHERAL
REGISTERS

SYSTEM
REGISTERS

REGISTER SUBDECODES
 0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

M
ODULE NUM

BERS

 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

Figure 2. The active
accumulator is designated
by the AP register, which
itself can be modified by
accumulator access
instructions.

Figure 3. The GR register
supports byte extraction,
byte-swapping, and 16-bit
sign extension.

Figure 4. Register
assignments in the
MAXQ20 core are split into
two regions: register banks
0 to 5 are peripheral
registers and can change
from one MAXQ part to
another; banks 7 to 15 are
system registers and remain
relatively fixed on all
MAXQ parts.

3

Decoding a MAXQ Instruction

Because every MAXQ instruction is really a MOVE, every
instruction can be broken down into three fields: a SOURCE
field that designates where the data is moved FROM; a
DESTINATION field that designates where the data is
moved TO; and a format bit that indicates whether the source
is an immediate value (FORMAT == 0) or a register
designator (FORMAT == 1) (Figure 6).

Take the instruction op code 0x0923, for example. In this
instruction, the FORMAT bit is clear, indicating that the
source designator (23) should be treated as an 8-bit
immediate value. The destination module is module 9, the
accumulator array. Register 0 within that array is the
accumulator A[0]. So, the effect of the instruction is to load
the value 0x0023 into register A[0]. In this case, there are
no side effects associated with either the source or
destination designators.

For a second example, consider 0xBF09. In this instruction,
the FORMAT bit is set, meaning that the source designator
should be interpreted as a register. Module 9 register 0 was
covered above: it is the accumulator A[0]. On the destination
side, module F is the data pointer module, and register 3 (bits
14:12 in the instruction) represents data pointer DP[0].
Therefore, this instruction moves the contents of A[0] to
DP[0].

Note that in some cases individual locations inside a register
module may or may not refer to actual registers.
Alternatively, they can refer to an actual register but then
cause some side effect to occur when that register subdecode
is accessed. For example, let us modify the previous
example slightly with 0xAF09. Only the destination
subdecode has changed. Now instead of loading the register
DP[0], the instruction decrements DP[0] and then begins a
store operation to the new memory location to which DP[0]
points. That is, the instruction performs an indirect store on
a predecremented pointer. In the MAXQ assembler this
would be coded as move @--DP[0], A[0], but it could be as
easily coded as move M15[2], M9[0].

The Prefix Register

There are 32 registers per module, but only four bits to select
a source register and only three bits to designate a destination register. At first glance, this implies
that half the register subdecodes could not be read, and fully three-quarters of register subdecodes
could not be written. Fortunately, the MAXQ architecture design works around this. Every MAXQ
processor provides a prefix register to supply these additional register address bits, and to provide
the upper byte of a word-wide move. See the Module 11—Prefix section for details.

Creating the MAXQ Instruction Set One Module at a Time

The following sections detail the system register modules and how they interact to create all the
documented and undocumented instructions. We first investigate the heart of the MAXQ20 core: the
accumulator array.

AP APC PSF IC IMR SC IIR CKCN WDCN

BOOLEAN VARIABLE MANIPULATION

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

IP
UNC

IP
Z

IP
C

IP
E

IP
S

IP
NZ

IP
NC

IP
NE

POP
PUSH SP IV CALL LC0 LC1 POPI

@FP @FP
++

@FP
--

OFFS DPC GR GRL BP GRS GRH GRXL FP

@DP0 @DP0
++

@DP0
--

DP0 @DP1 @DP1
++

@DP1
--

DP1

ACCUMULATOR OPERATIONS

PREFIX

DJNZ
LC0

DJNZ
LC1

CMP

7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

REGISTER SUBDECODE NUMBER

M
OD

UL
E

NU
M

BE
R

0

THE SOURCE DESIGNATOR. IF THE
FORMAT BIT IS CLEAR, THIS IS AN 8-BIT
IMMEDIATE OPERAND. IF THE FORMAT
BIT IS SET, THE LOW-ORDER FOUR BITS
DESIGNATE THE MODULE NUMBER, AND
THE UPPER FOUR BITS DESIGNATE THE
REGISTER SUBDECODE.

THE DESTINATION DESIGNATOR.
THE LOW-ORDER FOUR BITS DESIGNATE
THE MODULE NUMBER, AND THE
UPPER THREE BITS DESIGNATE THE
REGISTER SUBDECODE.

THE FORMAT BIT. IF SET, THE SOURCE DESIGNATOR REPRESENTS A
MODULE:SUBDECODE PAIR. IF CLEAR, THE SOURCE DESIGNATOR
REPRESENTS AN 8-BIT IMMEDIATE VALUE.

123456789101112131415

MODULEREGISTERMODULEREGISTER
DECODING A MAXQ INSTRUCTION

Figure 6. A MAXQ
instruction consists of
three parts: a source
designator, a destination
designator, and a source
format bit to determine
if the source is an
immediate operand or a
register operand.

Figure 5. The MAXQ
system register map
consists of the registers
present in all MAXQ20-
based processors and
additional decodes to
implement the
instruction set.

The MAXQ processor
family is a collection of
powerful 8-, 16-, and
32-bit, single-cycle
microcontrollers that
perform multiple
operations in one clock
cycle.

4

Module 9—Accumulators

The MAXQ architecture supports up to 32 accumulators, although in most variants only 16 are
implemented. The accumulators are directly accessed through module 9. Each subdecode within this
module represents a single accumulator. Module 9 is conceptually the simplest of the modules, but
there are two more modules that affect the accumulator array.

Module 8—System Control

This module contains a number of registers that manage aspects of system operation, such as interrupt
control and program status flags. Many of these registers are beyond the scope of this article, so refer
to the device specifications for more information.

The AP and APC registers deserve special attention. The AP register determines which of the
accumulator registers is the active accumulator; that is, it designates the target for arithmetic, logic,
and bitwise operations. It can point to any accumulator in the array.

The APC register contains a set of bits that define how the AP register is modified following any
accumulator operation. Thus, the AP register can be incremented or decremented with the count
rolling over on a selectable power-of-two modulus, making multiprecision arithmetic simple.

Module 10—Accumulator Functions

Module 10 is where most of the accumulator’s actual work is accomplished. It provides access to the
traditional ALU functions and bit-level access to the active accumulator. Module 10 is unique; it
behaves differently depending on whether it serves as the source, as the destination, or as both source
and destination.

If the source is module 10 and the destination is any module other than module 10, the accumulator’s
contents are moved to the destination. If the subdecode was zero, the AP register is modified
according to the bits in the APC register. If the subdecode was 1, the AP register is not modified.

Note that current versions of the macro assembler do not support subdecode 1. This is because there
is no mnemonic or modifier to designate subdecode 1. So, the instruction move A[1], ACCwill always
generate the op code 0x990A and never 0x991A.

When module 10 is specified as a destination and the source is either an immediate value or any module
other than module 10, the source is routed through the ALU; the destination is taken from the ALU’s
output, not directly from the source. This is how arithmetic and logical instructions are implemented.

Note that there is no restriction on what may serve as a source register. It can be an immediate value,
an indirect memory location, or even a value on the stack or a peripheral register.

When both the source and destination designate is module 10, it is either an accumulator-only
instruction or a bit manipulation involving the carry bit. In all cases, both the source and destination
subdecodes are used to designate the operation.

Destination subdecode 0 is the home of the accumulator-only instructions, including complement,
negate, and all shift, rotate, and exchange instructions. Destination subdecodes 1, 2, 3, 6, and 7
involve bitwise loads and operations that use the carry bit. Finally, destination subdecode 5 has the
carry-only operations: load 0 and 1 and complement.

Note that one source subdecode of destination subdecode 5 is the designated NOP instruction. While
any operation that both has no side effects and addresses a vacant register location will serve as an
NOP, a MOVE M10[5], M10[3] is specifically guaranteed to perform no operation in current or future
MAXQ devices. This is the op code that is generated (0xDA3A) in all current assemblers for the NOP
mnemonic.

Sixteen registers
known as
“accumulators” form a
general-purpose
register array.

The MAXQ20 core is a
16-bit CPU, meaning
that all accumulators
and most working
registers (stack, data
pointers, counters) are
16 bits in length.

The MAXQ20 can
address 64kWords of
code space (that is,
64kB instructions) and
64kWords (128kB) of
data space.

5

While all MAXQ
processors include a
memory management
unit (MMU) that allows
any memory segment
to be treated as code
or data, the code and
data buses are
separate.

What sets the MAXQ
architecture apart from
other, more
conventional CPUs is the
transfer-triggered
nature of the MAXQ
core.

Module 12—Instruction Pointer

Module 12 is unique because it contains a number of conditional load operations. If module 12 is
used as a source module, the IP is simply copied to the destination designator. But if module 12 is
the destination, no operation is performed unless the specified condition is met.

Module 12 is also unique because when loaded from an 8-bit immediate source, the source value is
interpreted as a signed integer and is added to the previous preincremented contents of the instruction
pointer. This addition facilitates relative short jumps, thus offering a significant savings in code size.
It also means that any short or long jump instruction can be conditional.

This module supports only simple load and store of the Instruction Pointer register (IP). The CALL
instruction is considered a stack instruction that also loads the IP, rather than as an IP instruction that
pushes to the stack. Consequently, the transfer for a CALL instruction is in the stack pointer module
(module 13). Also, there is no explicit RET instruction; this is cast as a POP IP.

Module 13—Stack Pointer

Module 13 contains not only the stack-pointer-related registers but also the loop counters and
interrupt vector. Note that several of the subdecodes are valid only as a destination. Subdecode 8 is
valid only as a source and facilitates the RETI instruction by popping a value from the stack and
clearing the interrupt in-service bit.

Subdecodes 3, 4, and 5 serve as proxies for the IP register. Subdecode 3 loads the instruction pointer
after the incremented instruction pointer is pushed to the stack, thus implementing a traditional
CALL instruction. Subdecodes 4 and 5 load a predecremented version of the designated loop counter
back to the loop counter, and also load the instruction pointer with the source operand if the
predecremented loop counter was nonzero. The source to load into this destination subdecode can
be anything; the instruction DJNZ LC[0], A[1] is perfectly valid. In this case, the instruction would
decrement LC[0] and jump to the address in A[1] if the result of the decrement operation is nonzero.

Module 14—GR, BP, and DPC

Module 14 contains the DPC register, GR register, and all registers associated with the base pointer
and the offset register.

The Data Pointer Control register (DPC) describes how the data pointers behave. In particular, it
contains a bit for each data pointer that defines whether that pointer is operating in word mode or
byte mode. It also contains a field that defines which pointer is the current source pointer. This is
necessary because the source is accessed when the source pointer is loaded and there is only one bus
for operand data.

The GR register is convenient when byte access is required for 16-bit data. Once GR is loaded with
16-bit data, the low- and high-order bytes can be retrieved through the GRL and GRH registers,
respectively. The GRS register contains the byte-swapped version of GR; the GRXL register is the
same as the GRL register, except that the high byte is the sign extension of the low-order byte.

The Base Pointer register (BP) is one of three data-memory pointer registers in the MAXQ
architecture, and the only one to support an offset register. BP typically points to the base of a data
structure, and the 8-bit unsigned offset register points to a data element within the structure. Note
that the increment and decrement versions of this register modify only the offset register and never
the base register.

Module 15—Data Pointers

Module 15 contains two of the three data pointers in the MAXQ architecture. Depending on the
subdecode, access to this module will perform a direct or indirect load or store, and may increment
or decrement the data pointer following an indirect access. These register subdecodes can be used as
either source or destination registers.

Every MAXQ processor
provides a prefix
register to supply these
additional register
address bits, and to
provide the upper byte
of a word-wide move.

6

Module 7—Boolean Variable Manipulation

The Boolean Variable Manipulation (BVM) module (Module 7) allows bit extraction and bit
setting/clearing for many registers in a typical MAXQ processor (Figure 7). Note that not all
modules have a connection to the BVM machine. Typically, only the peripheral modules connect
to the BVM; system registers do not. Consequently, moving data between the BVM and a system
register likely causes unpredictable consequences.

As a destination designator, the BVM serves as a proxy for the
carry bit. One bit of the source is extracted and copied to the
carry bit. If the BVM is a source designator, the value given in
bit 3 of the subdecode (bit 7 of the complete source designator)
is copied to the specified bit of the destination.

Note that the BVM only works with bits 0 to 7 of the peripheral
register. This is acceptable for most peripheral registers because
many registers (I/O ports in particular) are only 8 bits in length.
But when accessing 16-bit peripheral registers, only the low-
order 8 bits are available.

Module 11—Prefix

The prefix module is a unique feature of the MAXQ architecture that addresses a limitation of all
16-bit microcontrollers. With 16-bit registers, immediate load instructions require a 16-bit
operand, meaning that an effective immediate load instruction requires more than 16 bits.

There are several solutions to this limitation, including
variable length instructions and registers that allow
independent access to the low and high bytes (the MAXQ
GR register is an example of this). None of the solutions is
ideal because they complicate decode logic or involve new
registers (Figure 8).

The prefix mechanism improves on this process in two
ways. First, by prefixing only those instructions that
specifically require additional bits, the mechanism saves
code space and execution time. And second, by providing
additional bits not only for immediate operands but also for
register designators, the mechanism preserves the overall
architecture while extending the size of the register space.

Remember that while there are 32 registers per register module, only four bits designate a source
register and only three bits designate a destination register. The prefix mechanism provides these
additional bits.

The prefix mechanism is unique in several ways. Firstly, certain bits in the destination part of the
instruction are used as immediate source bits for accessing register subdecodes above 15 for
source addresses and above seven for destination addresses. In this way, a single prefix instruction
can provide access from any register or immediate value to any register subdecode.

Secondly, the prefix register is unique because any value loaded into it survives for one clock cycle
only. After that, the register is automatically cleared to zero. This means that any move to the
prefix register must be the instruction immediately before the instruction to be modified by the
prefix register. It also means that the prefix instruction is noninterruptible. If an interrupt occurred
following a prefix operation, the prefix information would be lost when the interrupt returned to
the main function.

As shown in Figure 9, bits from the prefix register go to the source designator, destination
designator, and immediate value. So, while most instructions execute in a single cycle, two cycles

10 1 1X

DESIGNATES THE BIT.
IF BVM IS THE SOURCE,
THIS IS THE BIT VALUE TO LOAD.

012345678

Figure 7. Subdecodes of
module 7 designate the bit
to extract or replace, if a
source designator, the
immediate bit value.

34

1

0123456789101112131415

1010 SD D MMMM MMMM

MMMM MMMMX

0123456789101112131415

XXXX SD D MMMM MMMM

8-BIT HIGH-ORDER EXTENSION
TO SOURCE OPERANDS

1-BIT FIELD APPENDED TO
SOURCE REGISTER ADDRESS

2-BIT FIELD APPENDED TO
DESTINATION REGISTER ADDRESS

PREFIX REGISTER

INSTRUCTION WORD

Figure 8. When the prefix
register is a destination, the
8-bit immediate source
provides the high-order
byte for 16-bit immediate
operands; the destination
subdecode provides
additional bits to permit
addressing of all 32
registers in each module
for both source and
destination operands.

7

are required for instructions that: address a destination register subdecode greater than 7; address
a source register subdecode greater than 15; or load an immediate value greater than 255.

To illustrate this process, consider the instruction move A[0], #010h. As this is moving an
immediate value to module 9 register 0, the assembler would create the following op code: 0910.
But if the instruction were move A[10], #0320h, the assembler would have to automatically insert
a prefix instruction: 2B03 2920.

Without the prefix instruction, the op code 2920 would
translate to move A[2], #020h. But the prefix adds a bit to the
destination specifier and additional bits to the immediate
value, allowing the processor to load any value to any
register subdecode and never taking more than two cycles.

Conclusion

Even though the MAXQ core is small and apparently
simple, its transfer-triggered architecture gives it a
significant edge in speed and flexibility. Because peripherals
are addressed directly through the register interface, the
speed of data transfer through the embedded peripherals can
be impressive. Overall, the MAXQ core in any of its forms
is an excellent choice for a wide range of microcontroller
applications.

For an expanded version of this article, go to:
www.maxim-ic.com/AN3960.

MAXQ is a registered trademark of Maxim Integrated Products, Inc.

012

4

34

SOURCE
SUBDECODE DESIGNATOR

0123

IIIIP

PP II I
DESTINATION

SUBDECODE DESIGNATOR

5671415

PP II IIMMEDIATE VALUE

1213

PP

1011

PP

89

PP

012

II I

34

I I

P – COMES FROM PREFIX

I – COMES FROM INSTRUCTION

Figure 9. The prefix register
provides the additional bits
needed for 16-bit immediate
operands and to address all
32 registers in each module
as both source and
destination.

Even though the MAXQ
core is small and
apparently simple, its
transfer-triggered
architecture gives it a
significant edge in
speed and flexibility.

8

SD Media Format Expands the
MAXQ2000’s Space for
Nonvolatile Data Storage
The low-power, low-noise MAXQ2000 microcontroller is suitable for a variety of applications. The
MAXQ2000 stores nonvolatile data in flash memory and has 32kWords (64kB) flash capacity that is
shared with user code space. But what if your application requires more nonvolatile storage? This
article demonstrates how to use the Secure Digital (SD) media format to expand the MAXQ2000’s
nonvolatile data storage.

Design Considerations for External Storage

The first design considerations for your application are supply voltage and current requirements. In a
typical MAXQ2000 application, a dual linear regulator is employed to run the processor core voltage
(VDD) at the lowest voltage necessary for the selected design clock rate. The MAXQ2000 VDD
supply can be as low as 1.8V. The I/O pins on the MAXQ2000 are supplied by VDDIO, which has
an allowable lower range of VDD and an upper limit of 3.6V. Acceptable current draw for external
storage is dictated by the current rating of the power supply and, in the case of a battery-powered
device, the capacity of the battery system.

Secondly, the number of MAXQ2000 I/O lines used to connect the external storage must be kept to
a minimum, while still providing sufficient bandwidth for the intended application. The Atmel
AT29LV512 flash chip, for example, requires 15 address lines, eight data lines, and three control lines
when interfaced with a host microcontroller. Because the MAXQ2000 does not have an external
address/data bus, software would need to control the bus transactions in that example. For some
applications, that method is not an efficient use of the MAXQ2000’s I/O pins.

SPI™ and I2C-based external flash devices, however, require only three or four interface pins. The
MAXQ2000 has a hardware SPI module, while I2C must be implemented on the MAXQ2000
by the user in software (i.e., “bit banging”). This integrated capability means that the SPI-interface is
the prime avenue for access to external nonvolatile storage.

SD Memory Card Format

The SD media format is a nonvolatile external memory that satisfies the above considerations for
many applications. The SD format is the successor to the “MultiMedia Card” format, or MMC. SD
card memories typically operate from 3.3V supplies with modest current requirements. SD card
capacities range from a few megabytes up to a maximum capacity of 4GB. This wide range of
available sizes provides ample external storage for many applications.

At first glance, SD may not appear to interface easily with the MAXQ2000 due to the
former’s proprietary shared bus. However, SD inherited MMC’s secondary bus
format, SPI. Thus, interfacing is simple because the MAXQ2000 contains hardware
support for SPI.

The schematic in Figure 1 shows a typical application circuit. The SD card requires full-
duplex, 8-bit SPI operation. Data is clocked into the card’s DI pin from the MAXQ2000’s
MOSI pin, and out of the card’s DO line into the MISO pin of the MAXQ2000. Data is
clocked simultaneously in and out of the card on the rising edge of the CLK line. Eight
extra clocks must be provided at the end of each transaction to permit the SD card to
complete any outstanding operations. The input data during these extra clocks must be all
ones. Clock rate must be limited to a maximum of 400kHz during the identification
phase, but can be increased up to 25MHz once the SD card has been identified.

The MAXQ2000 stores
nonvolatile data in flash
memory and has
32kWords (64kB) flash
capacity that is shared
with user code space.

3.3V

SD
 C

AR
D

VCC

DI
DO
CLK
CS
GND

MOSI
MISO

CLK
SSM

AX
Q2

00
0

Figure 1. The MAXQ2000
easily interfaces to an SD
memory card.

9

The MAXQ2000
contains a hardware
SPI module that is
easily configured for
the SD card
interface.

MAXQ2000 SPI Module

The MAXQ2000 contains a hardware SPI module that is easily configured for the SD card interface.
To configure the clock polarity and data length, the SPICF register is programmed to all zeros. This
configures the SPI module to latch data on rising clock edges and sets the data length to eight bits.
For this application, the MAXQ2000’s system clock frequency is 16MHz. In that case, the SPICK
register is programmed to 0x28, which results in an SPI clock of approximately 380kHz. The SPI
master mode must be enabled by setting the two lower bits of the SPICN register.

SD SPI Data Format

The SD card’s SPI protocol is similar to its SD bus protocol. Instead of receiving valid data from the
SD card’s DO pin at every clock edge, a card with no data to send will hold the DO pin at an idle
state of all ones. When the card has data to send back to the host, specialized tokens with a zero start
bit are sent before the data. All data transmitted from the SD card is sent immediately after these
tokens and is of fixed length. As the receiver has a prior knowledge of the number of bytes to expect,
no length bytes are contained in the response. Additionally, as the idle state cannot occur until after
the start token and data have been sent, all data bytes are transmitted unaltered and unprefixed.
Tokens, as with all other traffic on the bus, are aligned on the 8-bit boundaries of the SPI transaction.
Commands and data from the host to the card follow a similar format, with all ones denoting an idle
bus. All transactions except status tokens are protected by a cyclic redundancy check (CRC) code
appended to the end of data. Two CRC algorithms are provided: CRC-7 for short blocks of data, and
CRC-16 for longer blocks of data. The CRC is an optional part of the SD SPI interface, but should
be used to guarantee data integrity unless application constraints prevent its use.

SD Command Format

Commands are issued to the card in a 6-byte format (Figure 2). The first byte of a command can be
constructed by ORing the 6-bit command code with hex 0x40. The next four bytes provide a single
32-bit argument, if required
by the command; the final
byte contains the CRC-7
checksum over bytes 1
through 5. Table 1 lists
important SD commands.

Initializing the SD Card in SPI Mode

At power-up, the SD card defaults to the proprietary SD bus protocol. To switch the card to SPI
mode, the host issues command 0 (GO_IDLE_STATE). The SD card detects SPI mode selection,
because the card select (CS) pin is held low for this and all other SPI commands. The card responds
with response format R1 (Figure 3). The idle state bit is set high to signify that the card has entered
idle state. To maintain compatibility with MMC cards, the SPI clock rate must not exceed 400kHz
at this stage.

Command Mnemonic Argument Reply Description

0 (0x00) GO_IDLE_STATE <none> R1 Resets the SD card.

9 (0x09) SEND_CSD <none> R1 Sends card-specific data.

10 (0x0a) SEND_CID <none> R1 Sends card identification.

17 (0x11) READ_SINGLE_BLOCK address R1 Reads a block at byte address.

24 (0x18) WRITE_BLOCK address R1 Writes a block at byte address.

55 (0x37) APP_CMD <none> R1 Prefix for application command

59 (0x3b) CRC_ON_OFF Only Bit 0 R1 Argument sets CRC on (1) or off (0).

41 (0x29) SEND_OP_COND <none> R1 Starts card initialization.

Table 1. Selected SD Memory Card Commands

BYTE 6

BYTE 1

CRC

ARGUMENT - MSBCOMMAND

7 6 5 4 3 2 1

10

0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1

1

0

BYTE 2 BYTE 3 BYTE 4 BYTE 5

ARGUMENT ARGUMENT ARGUMENT - LSB

Figure 2. SPI-mode SD
commands are issued to the
card in a 6-byte format.

At first glance, SD may
not appear to easily
interface with the
MAXQ2000 due to the
proprietary shared bus.
However, SD inherited
MMC’s secondary bus
format, SPI.

10

Now that the SD card is in SPI mode, the SD specification requires that the host issue an initialization
command before any other requests can be processed. To differentiate between MMC and SD cards,
SD cards implement an alternative initialization command, to which MMC cards do not respond.
Sending command 55 (APP_CMD) followed by application command 41 (SEND_OP_COND) to
the card completes this important step. MMC cards do not respond to command 55, which can be
used to reject MMC cards as invalid media. This command sequence is repeated until all bits in the
R1 response from the card are zero (i.e., the IDLE bit goes low).

while(status && (errors < retries)) {
printf("-> Send CMD55_APP_CMD\r\n");
xmitcmd(CMD55_APP_CMD, arg);
if (waitForR1(&rxdata, 0) < 0) {
/* If this is a MultiMediaCard (not SD), it will not respond here */
printf("ERROR: Timeout! Perhaps this is a MMC card?\r\n");
return TR_TIMEOUT;

}
check_r1(rxdata, R1_IDLE);

printf("-> Send ACMD41_SEND_OP_COND\r\n");
xmitcmd(ACMD41_SEND_OP_COND, arg);
if (waitForR1(&rxdata, 0) < 0) {
printf("ERROR: Timeout on ACMD41_SEND_OP_COND\r\n");
return TR_TIMEOUT;

}
status = rxdata & R1_IDLE;
if (status) {
/* Pause here for a bit to let the card start up */
for (i = 0; i < 10000; i++); /* busy loop */

}
}

The SD card contains several
important registers that provide
information about the SD card. The
most important register is the Card
Specific Data register (CSD). For
our sample application we are
interested in the block size and
total size of the memory. We must
also pay attention to the Card
Identification Data register (CID),
as it contains details about the
cards’ manufacturer and serial
number. Figure 4 shows the layout
of the CSD and CID registers.

Examining the SD Card
Responses

To read card registers or blocks from
the card, we must first understand
how the card responds to our
inquiries. In SPI mode, the SD card
replies to the commands
SEND_CSD (9), SEND_CID (10),

and READ_SINGLE_BLOCK (17) with a R1 format reply. A start token, the requested data, and
finally a CRC-16 checksum over the data follow. We must not assume that the R1 reply and the data
start token occur immediately one after the other, as the bus can go to the idle state for some time
between these two events. Figure 5 details the data response.

SD CARD R1 RESPONSE FORMAT

IDLE STATE
ERASE RESET

ILLEGAL COMMAND
COMMAND CRC ERROR

ERASE SEQUENCE ERROR
ADDRESS ERROR

PARAMETER ERROR

7 6 5 4 3 2 1

0

0

Figure 3. Response format
R1 signals the success or
failure of the issued
command.

CARD IDENTIFICATION REGISTER

NAME

MID
OID
PNM
PRV
PSN
MDT
CRC-7

BINARY
ASCII
ASCII
BCD
BINARY
BCD
BINARY

MANUFACTURER ID
OEM/APPLICATION ID
PRODUCT NAME
PRODUCT REVISION
SERIAL NUMBER
MANUFACTURER DATE CODE
CRC-7 CHECKSUM

TYPE DESCRIPTION

CARD SPECIFIC DATA REGISTER

DENOTES RESERVED BIT LOCATION. SHOULD BE ZERO.

FILE_FORM
AT[1:0]

TM
P_W

RITE_PROTECT
PERM

_W
RITE_PROTECT

COPY

FILE_FORM
AT_GRP

READ_BL_LEN[3:0]
C_SIZE[11:10]

VDD_R_CURR_MIN[2:0]

VDD_R_CURR_MAX[2:0]
C_SIZE_MULT[2:1]

R2W_FACTOR[2:0]
WRITE_BL_LEN[3:2]

DSR_IM
P

READ_BLK_M
ISALIGN

W
RITE_BLK_M

ISALIGN

READ_BL_PARTIAL

0

BYTE

MID[7:0]
1 OID[15:8]
2 OID[7:0]
3 PNM[39:32]
4 PNM[31:24]
5 PNM[23:16]
6 PNM[15:8]
7 PNM[7:0]
8

C_SIZE[1:0]
VDD_W_CURR_MIN[2:0]

VDD_W_CURR_MAX[2:0]
C_SIZE_MULT[0]

ERASE_BLK_EN
SECTOR_SIZE[0]

WP_GRP_ENABLE
WRITE_BL_LEN[1:0]

PRV[7:0]
9 PSN[31:24]

10 PSN[23:16]
11 PSN[15:8]
12 PSN[7:0]
13 MDT[11:8]

1
14 MDT[7:0]
15 CRC-7[6:0]

7 6 5 4 3 2 1 0
BIT

0 0 0

BYTE

1 TAAC[7:0]
2 NSAC [7:0]
3 TRAN_SPEED[7:0]
4 CCC[11:4]
5 CCC[3:0]

7 C_SIZE[9:2]

WP_GRP_SIZE[6:0]
SECTOR_SIZE[6:1]

1
14

0

15 CRC-7[6:0]

7 6 5 4 3 2 1 0
BIT

LEGEND

Figure 4. The CSD and
CID registers provide
information about the
SD card.

11

Reading the CSD and CID Register
Meta-Data

The SEND_CSD and SEND_CID commands
send back register contents used to determine
the SD card parameters. These commands
return a fixed number of bytes, which
corresponds to the size of the CSD or CID
register, respectively. The argument contained
within the command bytes is ignored by the SD
card for these SEND commands.

Reading a Block of Data from the SD
Card

Reading a block of data from the SD card is
quite simple. The host issues the
READ_SINGLE_BLOCK command with a
starting byte address as the argument. This
address must be aligned with the beginning of a
block on the media. The SD card then evaluates
this byte address and responds back with an R1
command reply. An out-of-range address is
indicated in the command reply.

If the read is completed from the SD media without error, a start data token is sent followed by a
fixed number of data bytes and two bytes for the CRC-16 checksum. The start data token is not sent
if the SD card encounters a hardware failure or media read error. Rather, an error token is sent and
the data transfer is aborted.

Writing a Block of Data to the SD Card

Writing a block of data is similar to reading, as the host must supply a byte address that is aligned
with the SD card block boundaries. The write block size must equal READ_BL_LEN, which is
typically 512 bytes. A write is initiated by issuing the WRITE_BLOCK (24) command, to which
the SD card responds with the R1 command response format. If the command response indicates
that the write can proceed, the host transmits the data start token followed by a fixed number of
data bytes, and ends with a CRC-16 checksum of the sent data. The SD card returns a data
response token indicating the acceptance or rejection of the data to be written.

If the data is accepted, the SD card holds the DO line low continuously while the card is busy. The
host is not obligated to keep the card select low during the busy period, and the SD card releases the
DO line if CS is deasserted. This process is useful when more than one device is connected to the
SPI bus. The host can wait for the SD card to release the busy indication, or check the card by
periodically asserting the chip select. If the card is still busy, it will pull the DO line low to indicate
this state. Otherwise, the card returns the DO line to the idle state (see Figure 6).

SPI Command and Data Error Detection

The CRC-7 and CRC-16 checksums can be used to detect errors in the communication between the
host and SD card. Error detection allows for robust error recovery in the event of physically
induced errors such as contact bounce during insertion and removal or nonideal contact-mating
situations inherent with detachable media. The use of checksums, by issuing the CRC_ON_OFF
(59) command with the lowest bit set in the argument, is highly recommended.

Clock rate must be
limited to a maximum
of 400kHz during the
identification phase,
but can be increased up
to 25MHz once the SD
card has been
identified.

SUCCESSFUL DATA TRANSFER CARD TO HOST

UNSUCCESSFUL DATA TRANSFER CARD TO HOST

DATA IN (DI)

R1

R1 ER

COMMAND

ST DATA CRC

COMMAND

DATA OUT (DO)

DATA IN (DI)

DATA OUT (DO)
ERROR
CARD CONTROLLER ERROR
M

EDIA ECC FAILED
OUT OF RANGE
CARD IS LOCKED

7 BIT

0 0 0

0

START TOKEN (OxFE)

ERROR TOKEN

Figure 5. Data transfers
from the SD card to the
host are prefixed by a start
token.

12

/* Enable CRC to protect against error */

printf("-> Send CMD59_CRC_ON_OFF\r\n");
arg[3] = 0x01; /* LSB set to 1 enables CRC verification */
xmitcmd(CMD59_CRC_ON_OFF, arg);
CLEAR_ARGS(arg);
if (waitForR1(&rxdata, 0) < 0) {
printf("ERROR: Timeout on CMD59_CRC_ON_OFF\r\n");
return -1;

}
if (rxdata != 0x00) {
printf("WARNING: R1 status 0x%02x, expecting 0x00\r\n", rxdata);

}

Conclusion

The SD media card format represents a compact, low-power nonvolatile memory solution for
embedded systems. By using the hardware SPI support provided by the MAXQ2000
microcontroller, SD media cards can be accessed with very little overhead. The reference software
provided by Maxim at www.maxim-ic.com/MAXQ2000_SD demonstrates a minimal
implementation, which includes the essential operations required to read blocks from and write
blocks to an SD card.

For an expanded version of this article, go to: www.maxim-ic.com/AN3969.

SPI is a trademark of Motorola, Inc.

DATA IN (DI)

R1 ER

COMMAND ST DATA CRC

DATA OUT (DO)

010: DATA ACCEPTED
101: TRANSMISSION CRC ERROR
110: DATA WRITE ERROR

DATA TRANSFER HOST TO CARD

DATA RESP

7 BIT

0 1

0

START TOKEN (OxFE)

WRITE COMPLETE

DENOTES DON'T CARE

LEGEND

Figure 6. Data transfers
from the host to the SD
card involve a more
complex handshake.

References

Further information on the SD media format can be obtained from the Secure Digital Association
at www.sdcard.org. The SD media breakout board used in this project can be ordered from
www.sparkfun.com/commerce/product_info.php?products_id=204.

By using the hardware
SPI support provided
by the MAXQ2000
microcontroller, SD
media cards can be
accessed with very
little overhead.

13

Using Rowley CrossWorks and the
MAXQ3100* Evaluation Kit to
Create a Temperature Logging
Application
In this article, we use Rowley Associates’ CrossWorks and the MAXQ3100 evaluation kit (EV kit)
to create a simple temperature logger. Because the MAXQ3100 integrates a temperature sensor, no
additional components are required.

CrossWorks for MAXQ provides a full-
featured development environment for C
applications on the MAXQ platform.
CrossWorks includes: an ANSI C compiler; an
assembler and linker optimized for the MAXQ
architecture; and a debugger designed to
interface with both the hardware-based debug
engine and the JTAG interface found on most
MAXQ microcontrollers. All these elements
are integrated into a project-based development
environment that has a comprehensive help
system, built-in support, and examples for
MAXQ microcontrollers such as the
MAXQ2000 and the MAXQ3100. Note that
the Rowley CrossWorks for MAXQ is
currently only available for Windows®

platforms. Download a 30-day evaluation
license at: www.rowley.co.uk/maxq/index.htm.

The MAXQ3100 EV kit includes components that demonstrate the MAXQ3100’s key features
(available at: www.maxim-ic.com/MAXQ3100) and allows software development to begin
immediately while custom hardware design is underway. The kit includes the following features:

• MAXQ3100 microcontroller in an 80-pin MQFP package with a
32kHz crystal

• Serial-to-JTAG interface board for programming and debugging
from a PC host

• 3.6V linear regulator to run the MAXQ3100 directly from the
JTAG interface

• Manually adjustable linear regulator that outputs between 1.8V and
3.6V

• 8-character (14 segments per character) LCD 1/4-duty display
driven directly by the MAXQ3100

• Two level-shifted serial ports with DB9 connectors

• Reset and external interrupt pushbuttons

• Prototyping area with access to MAXQ3100 port pins, comparator
inputs, and power supplies

Combined with the serial-to-JTAG interface board (Figure 1), this
system allows full access to the MAXQ3100’s in-system bootloader
and debugging features.

JTAG INTERFACE
BOARD

SERIAL DEBUG
PORT

BACKUP BATTERY 8-CHARACTER LCD PROTOTYPE AREA INTERRUPT
PUSHBUTTON

JTAG INTERFACE
CABLE

RESET
PUSHBUTTON MAXQ3100 DUAL SERIAL PORT

Figure 2. The first step in
creating a new project is to
select the target device and
executable type.

CrossWorks for MAXQ
provides a full-featured
development
environment for C
applications on the
MAXQ platform.

Figure 1. The
MAXQ3100-KIT and
serial-to-JTAG boards
combine to form a
complete system for
application development.

Creating a Project in Rowley Crossworks

Once you complete product activation (see “Support: Evaluating
CrossWorks” on the Rowley website), start CrossWorks. To
create a new project, select File ➔ New ➔ New Project from the
menu. In the New Project dialog (Figure 2) select “MAXQ3100
Kit” and “C Executable,” and enter a name and location for the
new project. In the Project Setup dialog that follows (Figure 3),
verify that the MAXQ3100 is selected for the “Target Processor”
option. The remaining settings can remain at their default values.
Click Finish to generate the new project.

Application Overview

This MAXQ3100 demonstration example showcases four key
features of the processor: the ambient temperature sensor, the
LCD controller, the real-time clock (RTC), and the UART
interface. With these peripherals, we can create an application that
measures temperature levels, displays the time and temperature on
an LCD, and transmits data back to a PC over the UART interface.
Complete code for this example is available online at:
www.maxim-ic.com/MAXQ3100_ temp_logger.

Because the program memory for the MAXQ3100 is implemented using word-rewriteable
EEPROM, the application can use the remaining unused program memory to store a time and
temperature log. The utility ROM on the MAXQ3100 provides in-application programming
routines that allow portions of the EEPROM to be rewritten and erased under software control.

Measuring the Temperature

The MAXQ3100’s temperature sensor measures ambient temperature to a resolution down to
0.0625°C. The width of the sample value returned is selectable from 10 bits (0.5°C resolution) to 13
bits (0.0625°C resolution).

void
convertTemp(void)
{
IC = 0; // Disable interrupts

TPCFG = 0x06; // Set resolution to 13 bits
TPCFG = 0x07; // Start conversion
while ((TPCFG & 0x01) == 0x01) {} // Wait for conversion to complete
g_lastTemp = TEMPR; // Store temperature value

IC = 1; // Enable interrupts
}

Once the temperature is measured, it can be converted to a floating point value in either degrees
Celsius or degrees Fahrenheit.

Displaying the Temperature Value

The MAXQ3100 EV kit includes an 8-character LCD, configured as shown in Figure 4, which
provides more than enough display space to show the current temperature reading to two
decimal places.

Because the LCD characters are 14 segment, special characters such as plus, minus, and the degree
sign are easy to display along with standard 0 to 9 and alphabetic characters. The first step is to
initialize the LCD controller.

14

Figure 3. The MAXQ3100
is the target processor for
this project.

15

Once the LCD is initialized, we can add code to set any of the eight
digits to any of the supported character values. The LCD segments
are mapped into the display registers LCD0 to LCD15 (Table 1),
so showing characters on the display is simply a matter of writing
values into the proper register locations.

Two registers are used to store the segment values for each character,
which includes the decimal point and indicator annunciators. These
registers can be modified while the LCD controller is running.

A similar routine (displayDP) is provided to set and clear decimal
points on the LCD. With these routines in place, the measured
temperature value can be converted into the proper display digits.
The application includes a fixed delay between temperature
conversions, which means that the display updates several times per
second.

Starting and Setting the Clock

The recorded temperature samples become more useful if the
application provides a way to connect (i.e., to pair) the samples with
the time when they were measured. Because the MAXQ3100’s RTC is based on a 32kHz crystal
oscillator clock, the RTC is the natural choice for a clock value to timestamp each temperature
sample. The application displays the clock on the LCD display when requested, and records a
time-and-temperature sample pair once a minute in the EEPROM.

Once the RTC is started, it can be used to generate a periodic alarm that triggers an interrupt at a
programmable interval. Our application uses this interval alarm to generate an interrupt precisely
once a second. This interrupt is then used to increment a global seconds counter in the application.

In CrossWorks, any function can be designated as an interrupt handler by adding the __interrupt
keyword to the function definition. Then, the built-in setIV() function is used to load the
programmable interrupt vector register (IV) at the entry point of the interrupt handler function.
Because all interrupts on the MAXQ3100 vector to the address contained in the IV register, we only
need to define one interrupt handler function. This application uses only one interrupt, but if it needed
to use others, additional interrupt flags could be checked inside the interrupt handler function to
determine which interrupt triggered the function call.

Table 1. LCD Display Memory Map (1/4 Duty)

Register Bit 7
COM3

Bit 6
COM2

Bit 5
COM1

Bit 4
COM0

Bit 3
COM3

Bit 2
COM2

Bit 1
COM1

Bit 0
COM0

LCD0 1D 1E 1F 1CA 1DP 1C 1B 1G
LCD1 1N 1K 1J 1I 1M 1L 1A 1H
LCD2 2D 2E 2F 2CA 2DP 2C 2B 2G
LCD3 2N 2K 2J 2I 2M 2L 2A 2H
LCD4 3D 3E 3F 3CA 3DP 3C 3B 3G
LCD5 3N 3K 3J 3I 3M 3L 3A 3H
LCD6 4D 4E 4F 4CA 4DP 4C 4B 4G
LCD7 4N 4K 4J 4I 4M 4L 4A 4H
LCD8 5D 5E 5F 5CA 5DP 5C 5B 5G
LCD9 5N 5K 5J 5I 5M 5L 5A 5H
LCD10 6D 6E 6F 6CA 6DP 6C 6B 6G
LCD11 6N 6K 6J 6I 6M 6L 6A 6H
LCD12 7D 7E 7F 7CA 7DP 7C 7B 7G
LCD13 7N 7K 7J 7I 7M 7L 7A 7H
LCD14 8D 8E 8F 8CA 8DP 8C 8B 8G
LCD15 8N 8K 8J 8I 8M 8L 8A 8H

Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Digit 6 Digit 7

G

B

C

CA

DP

D

E

F

I
J

K

N

M

L

A

H

Digit 8

Figure 4. The MAXQ3100
EV kit provides an 8-
character, 14-segment LCD
for application use.

In CrossWorks, any
function can be
designated as an
interrupt handler by
adding the __interrupt
keyword to the function
definition.

16

The interrupt handler function increments the seconds (0 to 59), minutes (0 to 59), and hours (1 to
12) counters appropriately. Every time the seconds counter rolls over (once a minute), the function
uses asm_writeLog to record the current time and last measured temperature value to the nonvolatile
EEPROM log. Also, the leftmost caret on the LCD display (left of digit 7) is toggled each time the
seconds interrupt is triggered, thus providing a heartbeat indicator. This operation occurs even when
the time is not currently displayed.

The starting point of the log in EEPROM is fixed using a constant (LOG_START), which must be
set to an area beyond the end of the compiled application. For example, the current version of the
application occupies 8972 code bytes, which means that the loaded application runs from word
address 0000h to 1185h in program memory. Setting LOG_START to 1800h puts the log well
beyond the end of the application and reserves (2000h – 1800h) = 2048 words of EEPROM for
logging use. As two words are used for each entry, the application can log 1048 time/temperature
value pairs. At one log entry per minute, this results in a rolling log of about 17 hours in duration. As
each new log entry is written, the oldest previous entry is also deleted.

Normally, CrossWorks handles all the potential issues introduced by an interrupt handler routine.
When the interrupt triggers, the working registers and context of the currently executing routine are
saved. This information is restored after the interrupt handler exits. Users should, however, pay
attention to the following circumstances:

• If the interrupt handler routine accesses global variables used elsewhere in the application, other
sections of code that access these same variables should do two things: disable interrupts before
reading or writing the variables, and enable interrupts once the operation has completed.

• Take care when implementing code that performs operations directly on MAXQ3100 low-level
registers. CrossWorks does not automatically save or restore the states of these registers when
an interrupt is triggered. For example, if an interrupt occurs during a printf() to a serial port,
the interrupt handler should not contain calls to printf() or code that writes directly to the
serial-port registers.

• Any interrupt flags that triggered the interrupt call must be cleared before the interrupt handler
routine exits. Otherwise, the interrupt immediately triggers again. (In the incr_seconds() routine,
for example, the alarm subsecond flag RCNT.7 must be cleared.) Interrupt flags are not cleared by
hardware automatically.

Interfacing with Assembly Routines

CrossWorks allows native MAXQ assembly routines to be linked into the application along with C
code. This allows specialized assembly routines to be included in an application to perform tasks that
are difficult to do with compiled C code. In our application, assembly functions are used to interface
with MAXQ3100 utility ROM routines that read from locations in program space, and write to or
erase locations in the EEPROM.

int asm_readLog(int addr);
int asm_writeLog(int addr, int wval);
int asm_erasePage(int addr);

When writing assembly routines that will be called from C code, one must first determine how
parameters and return values will be passed back and forth. In CrossWorks, up to four integer
parameters can be passed into a function by using the accumulator registers A[7] through A[4]. For
example, if a function is defined as:

int asm_func1(int foo, int bar, int frob, int nitz)

then upon entry into the function, A[7] is set to the value of foo, A[6] is set to the value of bar, A[5]
is set to frob, and A[4] is set to nitz. (Larger values, such as longwords, are passed in register pairs;
if a function has too many input parameters to pass in A[7] to A[4], the parameters are passed on the
soft stack. Refer to the CrossWorks help system for more details.) Integer return values from a
function are stored in A[7] for passage back to the calling C code.

Once the RTC is started,
it can be used to
generate a periodic
alarm that triggers an
interrupt at a
programmable interval.

17

The asm_writeLog routine takes two parameters: a location to which to write in program memory,
and a word of data to write there. The assembly code passes these parameters along to an assembly
function in the utility ROM called UROM_eepromWriteWord. Following this function call, the
assembly code must ensure that any registers that may be in use by the C code are restored before
exit; in CrossWorks, this set of registers includes accumulator registers A[0] to A[3] and A[8] to
A[15]. If any of these registers are modified in the assembly routine, they must be restored before
the routine exits. DPC must also be restored to the value 18h as shown, which sets DP[0] to byte
mode and DP[1] and BP[Offs] to word mode.

urom_eepromWriteWord EQU (0x874E << 1)

public _asm_writeWord

code ; Code segment
even ; Align to word boundary

_asm_writeWord:
move DPC, #0x1C ; Set all data pointers to word mode
move DP[0], A[7] ; DP[0] is the address that will be written
move A[4], A[0] ; Save off A[0] (used by C code)
move A[0], A[6] ; A[0] is the word value that will be written
move A[5], A[1] ; Save off A[1] (used by C code)
move A[6], A[2] ; Save off A[2] (used by C code)

call urom_eepromWriteWord ; Writes word, destroys A[0],A[1],A[2]

move DPC, #0x18 ; Reset data pointer modes for C code
move A[2], A[6] ; Restore A[2]
move A[1], A[5] ; Restore A[1]
move A[0], A[4] ; Restore A[0]
ret

Note that the address of the UROM_eepromWriteWord routine is defined for the CrossWorks
assembler in terms of a byte address (874Eh shifted left by 1). This differs from the MAXQ
assembler, which assumes that all program space addresses are word addresses.

Similar functions are implemented to read recorded values back from the EEPROM (asm_readWord)
and to erase 32 word pages from the EEPROM (asm_erasePage). These functions are implemented
in a similar manner, and use the utility ROM functions UROM_moveDP0 and UROM_eepromErasePage.

The hardware stack is another issue that arises when assembly routines are in use. Normally,
CrossWorks tracks the depth of the hardware stack by using the soft C stack implemented in data
memory to store parameters and local variables for function calls. As long as our application is only
using C code, the task of ensuring that we do not overflow the hardware stack remains entirely with
the compiler.

When an assembly routine is called, however, the compiler has no way of knowing how many stack
levels the assembly routine might need. Each CALL, PUSH/POP, or interrupt entry in the assembly
code requires one stack word, and utility ROM routines can use stack words as well. In this case,
since there are no hardware indicators or interrupts that indicate that a stack overflow occurred,
preventing a stack overflow is the user’s responsibility.

Once you determine the number of stack levels that the assembly routine will use, you can
determine the number the compiler will use. In general, each subroutine call down from main()
requires one stack level, and if the debugger is active, an additional stack level must be reserved
for debug engine calls. The compiler will also, if allowed, use additional stack levels to create
subroutines containing repeated code for optimization purposes. To restrict this usage to a specified
number of stack levels, select Project ➔ Properties from the menu. Then select the Linker tab,
and enter “-Oxcp=n” in the Additional Linker Options field (Figure 5). This instructs the compiler
to limit the number of code-factoring optimization passes to n, which means that the maximum
number of stack levels used will be:

In CrossWorks, up to
four integer parameters
can be passed into a
function using the
accumulator registers
A[7] through A[4].
Integer return values
from a function are
stored in A[7] for
passage back to the
calling C code.

CrossWorks allows
native MAXQ assembly
routines to be linked
into the application
along with C code.

18

(Max depth of subroutine calls from main()) + (1 if debugger is used) +
(stack levels used in assembly) + n

This dialog also contains a setting to generate a hex output file from CrossWorks (set Additional
Output Format = hex), which will generate a version of the compiled application that can be loaded
by using MTK or MAX-IDE.

Communicating with a Host
System

To download recorded values from the
log and to configure the temperature
logging system, the application employs
one of the two level-shifted serial ports
found on the MAXQ3100 EV kit. The
DB9 connectors from these ports (serial
port 0 and serial port 1 on the
MAXQ3100) can be connected directly
to the COM port of a PC, thus allowing
the user to interface with the
temperature-logging demo with the
Dumb Terminal mode of MTK or a
similar terminal emulator application
such as TeraTerm. The serial-port
output from the application is in
standard 10-bit asynchronous format (1
start bit, 8 data bits, 1 stop bit) and is
transmitted at 9600 baud.

CrossWorks provides the standard C printf() function as part of its standard library set, so most of
the code needed to translate the time and temperature values into ASCII is already done. The only
remaining step is to initialize and control the serial port that will be sending the data. The interface
is handled by defining the __putchar function to output a character over serial port 0. Once this has
been done, printf() will automatically call the putchar() function as needed.

Note that for the log output code to function properly, support for floating point numbers in
printf()must be explicitly enabled. This support is disabled by default, since enabling it adds a
large amount of code (approximately 3500 bytes for this application build). To turn on floating point
printf() support, go to the Project Options dialog, select the Printf tab, and set the Printf
Floating Point Supported field to “Yes.”

The application also allows the user to perform simple configuration and control operations by
typing single characters into the terminal emulator on the PC host side. When these characters are
received over serial port 0, the application performs the following operations:

• d—Rotates the display mode between Clock, Current Temperature (C), and Temperature (F).

• m—Increments the clock’s minutes count by 1.

• h—Increments the clock’s hours count by 1.

• F—Outputs all nonzero values currently recorded in the time/temperature log in degrees F.

• C—Outputs all nonzero values currently recorded in the time/temperature log in degrees C.

• Z—Erases all values currently recorded in the log.

CrossWorks provides
the standard C
printf() function as
part of its standard
library set, so most of
the code needed to
translate the time and
temperature values into
ASCII has already been
done.

Figure 5. The maximum
number of stack levels used
for code optimization can
be specified in the Project
Options dialog.

19

Table 2 shows a sample log output in degrees F.

Table 2. Sample Log Output

Conclusion

The MAXQ3100 integrates a temperature sensor, dual UART serial ports, and an LCD controller
with enough processing power to run complex C applications. Adding the comprehensive toolset
and development environment of Rowley Associates’ CrossWorks allows anyone to develop and
debug data capture and processing applications quickly with standard ANSI C.

For an expanded version of this article, go to: www.maxim-ic.com/AN3975.

*Future product—contact factory for availability
Windows is a registered trademark of Microsoft Corporation.

Adding the
comprehensive toolset
and development
environment of Rowley
Associates' CrossWorks
allows anyone to
develop and debug
data capture and
processing applications
quickly using standard
ANSI C.

Time Temperature (°F)

10:31 77.34

10:32 84.20

10:33 79.25

10:34 75.20

10:35 78.12

10:36 98.37

